If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+x-61=0
a = 1; b = 1; c = -61;
Δ = b2-4ac
Δ = 12-4·1·(-61)
Δ = 245
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{245}=\sqrt{49*5}=\sqrt{49}*\sqrt{5}=7\sqrt{5}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-7\sqrt{5}}{2*1}=\frac{-1-7\sqrt{5}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+7\sqrt{5}}{2*1}=\frac{-1+7\sqrt{5}}{2} $
| 10p+2=92 | | 5(x−1)+2x−1=64 | | 5x-x^2/100-x/5+500=0 | | 10x+6=11x-7 | | 27-x2=0 | | 2(x-4)=6(8-x) | | 4-5x/12-3x-3/2=2x-6 | | 20=-8(x+2)-4 | | 5x+17=3x+4 | | 5x+30=5(6+5x) | | (x-6)-6=-1 | | 1/5+n=9 | | 4(d+7);d=3 | | 5x-(x^2/100)-(x/5)+500=0 | | 5=2x+21÷3 | | 5(n-8)=-12+n | | 9=-+k/5 | | 5x2−6x=8 | | 31-5x=32 | | 7b-2=-2(1+8b) | | 36-2v=-8(v-3) | | 3x=5=7x | | |31-5x|=32 | | 5-6(1+x)=9-x | | 8(x-1)=3x+32 | | -28-7a=2(a+3)+8a | | 2y=+1=7 | | (x+54)+5x+90=180 | | 4x/1.50=38.00 | | X/3=3t | | 5(2y-7)+8(y+6)=30 | | 5x2-3x=2 |